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Abstract--The stability features of a general class of one-dimensional two-phase flow models are 
examined. This class of models is characterized by the presence of first-order derivatives and 
algebraic functions of the flow variables, higher-order differential terms being absent, and can 
accommodate a variety of physical effects such as added mass and unequal phase pressures in some 
formulations. By taking a general standpoint, a number of results are obtained applicable to the 
entire class of models considered. In particular, it is found that, despite the presence of algebraic 
terms in the equations (describing, e.g. drag effects) the stability criteria are independent of the 
wavenumber of the perturbation. As a consequence, reality of characteristics is necessary, although 
not sufficient, for stability. To illustrate the theory, three specific models are considered in detail. 

I N T R O D U C T I O N  

In this paper the stability features of a general class of one-dimensional two-phase flow 
models are examined. The salient characteristic of this general class is that it contains only 
first-order differential and algebraic terms. Several specific two-phase flow models available 
in the literature are of this type. Stuhmiller (1977) was led to such a model by the 
consideration of added mass and dynamic pressure in the context of bubbly flow. Ardron 
(1980), Rousseau & Fetch (1979), and Banerjee & Chan (1979) considered two-pressure 
models motivated by the effect of gravity on stratified flows and showed that the difference 
in pressure was proportional to the gradient of the void fraction. Models belonging to this 
class are also currently used in large nuclear safety codes such as RELAP-5 (Ransom 1980). 
Even for models containing higher-order derivatives such as those of Ramshaw & Trapp 
(1978), Arai (1980), and Banerjee 0980), the stability at long wavelength is dominated by 
the first-order differential terms (Prosperetti & Jones 1985) and therefore in this sense they 
fall within the class considered here. 

It is not our purpose here to add a new specific model to an already crowded list. Rather, 
by taking a more general standpoint, we are able to obtain a number of results applicable to 
the entire class of models considered. In this way some criteria for the evaluation of new and 
existing models can be formulated concerning steady flows, their stability, the reality of 
characteristics, and other features. For example, an interesting result that we find is that in 
spite of the presence of algebraic terms the stability properties of steady uniform flows are 
independent of the wavelength of the perturbation. This circumstance is a clear indication of 
the incompleteness of this class of models and shows, for example, that phenomena such as 
flow regime transitions require the presence of higher-order derivatives in the equations. 

As examples of the possible use of the results obtained three specific models are 
considered in detail. Interestingly the simplest such model, which is in widespread use in 
engineering calculations, is found to possess a number of unphysical features. The other 
models contain two different formulations of added mass effects, and while one of them has 
acceptable stability properties, the second one appears to be incomplete and to require the 
addition of further terms. 

In the course of our analysis we make a number of simplifying assumptions, the most 
significant of which is the neglect of the compressibility of the individual phases. This has the 
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effect of rendering the consideration of the energy equations superfluous. Although our 
results cannot therefore be applied to situations for which compressibility effects are 
important (e.g. pressure wave propagation in bubbly flows), there remains a number of 
practical situations in which they are relevant, such as droplet flow at low velocity and 
liquid-liquid and fluid-solid flows whenever extremes of pressure are absent. 

A G E N E R A L  C L A S S  O F  T W O - P H A S E  M O D E L S  

The general class of one-dimensional, adiabatic, two-phase models to be considered in this 
paper is described by the following equations: 

0 0 
aS (acp~) + ~ (a~p~Vc) = 0, 

a o 
at (,~a,D + ~ (=a,~v~) = o, 

a a ap 

= j-~.L~--~[haJ"~-+ a j - ~ x l + m ~ - ~ + n a  
aol G 

Ox ' 

[la] 

[ l b ]  

[2a] 

a a 
(=a,~v~) + ~x ("°'v'~) + aL ~x - aooLAL 

. - - . /  a~ . a~\ aaL aaL 
= + k.,  + , , ,  - E  + " '  a x "  

[2b] 

Here p, V and p indicate density, velocity and pressure and the indices G and L distinguish 
the two phases. The volume fractions aL, ota are related by 

a L + ot c = 1. [3] 

Equations [ 1 ] express conservation of mass of each phase and implicitly assume that no 
mass transfer occurs between the phases. The second pair of equations is a statement of the 
momentum balance for each phase. 

The present model is restricted to contain only the derivative terms which explicitly 
appear in [2]. The quantities A ,  hij, k U, m ,  n~ are therefore taken to be algebraic functions of 
the flow variables VL.a, pL.a, aL.c. For the following developments we must exclude pressure 
from this list. A number of models conform to this restriction (Wallis 1969, Harlow & 
Amsden 1975, Stewart 1979, Liles & Mahaffy 1979, Spalding 1979, Smith 1980) especially 
for the disperse flow regime (Prosperetti & Jones 1984). 

Although a single pressure appears in the momentum equations [2], unequal-pressure 
models can be cast in the form of [2] provided that the difference between the phase 
pressures can be written as an algebraic function of the flow variables as, for instance, in 
some separated flow models (Rousseau & Ferch 1979, Ardron 1980, Banerjee 1980). In 
addition to accounting for possible pressure differences, the terms on the right-hand side of 
[2] can describe a variety of physical effects such as added mass, unsteady contributions to 
the drag, correlation contributions arising from averaging of the exact conservation 
equations, and interparticle forces. The algebraic functions ALo are intended to model steady 
drag and body forces. Although our results are not dependent on any specific structure for 
these functions we may quote as an example the form used by Harlow & Amsden (1975): 

H C r " L  - -  V,~)  - K J " c  
Ac = g + [4a] 

aGPG 
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H(Va - VL) - KLVL 
AL = g + [4b] 

¢XtPL 

Here g is the component of gravitational acceleration in the direction of the flow, H is the 
drag coefficient between the phases and Ke and KL are drag coefficients of the gas and liquid 
phase With any structure which may be present, e.g. pipe walls. 

In order to make the model [1], [2] amenable to an analytical treatment we need to 
assume that the phase densities 0,.e are constant. Certainly this is a good approximation for 
liquid-liquid and liquid-solid flows under most conditions. For gas-solid or gas-liquid flows 
this assumption is somewhat more restrictive especially in view of the small velocity of 
pressure waves in bubbly liquids, but still includes a range of practically interesting 

situations. 
With this assumption P/~c can be omitted in [ 1] which can he combined using [3] to 

give 

0 a~ (,~vL + ,~v~)  = o, [51 

which shows the space independence of the volume velocity Ugiven by 

U = .~VL + a c r e .  [6] 

In terms of this quantity, using [3], the volume fractions can be expressed as 

U -  VL U -  Ve [7] 

Note that, since otc. L > 0,  these relations show that U lies between Ve and VL. 
Using these relations the terms .involving derivatives of c~L.e on the rhs of [2] can be 

expressed as linear combinations of U - dU/dt, and time and space derivatives of Ve.L. The 
momentum equations can then be written in the form 

. ,  op / / 
a a ((,,v~) + ,,,,4, + ~, -g;] Ot (°l'Vi) + ~X -~i~X - j-a.LZ ~q'J-~ + r,j + c~d,~l, i=  a , t .  [8] 

The qo, ro, si are algebraic functions of Uand Ve.L which can be expressed in terms of hq, kjj, 
m,  n~ in a straightforward manner which we do not need to specify. If [8], written for 
i - L and i - G, are now added, by [6] and [7] one readily finds that 

1 0,o + ~j + (U OVc OVL 
0X -- VL) ~ + (U - VG) ~ - (rhs)~ + (rhs)L, [9] 

where 

- I O~L °~e 
- -  + - -  [ l O ]  

PL P~ 

and (rhs);, i - G, L, represents the right-hand side of [8]. Equation [9] can now be used to 
eliminate Op/Ox from [2] with the result 

• ave avL av~ av, 
( l - aL~IG) ~ -- (XL~L O F  + Wee T x  + WGL T x  = Be + Se ~r, 

av~ av, _ av~ avL 
--ae~/G'-~-" + (1 + aG1/L) ~ + WLaTX + W ~ ' ~ "  x - BL + SLU 

[ l l a ]  

[ l lb]  
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in which some auxiliary quantities have been inn:oduced. These are defined as follows: 

) W= a L V c + - - V L  ~, 
PG 

~c 
~ PG PL ] 

Woo = W + aLO0, 

W ~ L  - a ,  - -  ( V c  - v ~ )  - a~O, = a ~  ( V c  - W , ~ ) ,  
Pc ao 

Oc = (rL---- ° rool ~" 
\ PC PL ] 

[121 

[13] 

[141 

[15] 

[161 

with ~L, OL, WLL, WLc defined by similar expressions with the indices L and G interchanged. 
The source terms Be.L, So.L are defined by 

Pc \PL ~ " 

[171 

[18] 

Equations [11] together with [7] define a closed system, whose stability properties are 
investigated in the subsequent sections. 

STEADY FLOW 

The simplest situation to which [ 11] can be appliezi is that of steady flow in a straight 
pipe. In this case 8V~,L/Ot -- 0, U = 0, and [1 1] may be solved for OVc,L/dX to give 

av~ AL/po - Ac/pt aL Vc, [19a1 
=L aLOc ac#L 

ax ~ v 2, + - -  v~ + - -  VG + --=-- V~ 
PG PL P P 

0 VL ffi A d p c  - AO/PL ao V,. [ 19b] 
aL aLO~ a~L OX ' ~  V 2, + - -  V~ + --:-- Vc + ---:- V~ 

PC PL P P 

For V~.L "~ 0 these derivatives are seen to vanish together and to have opposite signs if Va and 
VL have the same sign. Dividing [19b] by [19a] we find that 

dVo aLVo U -  Vo Vc 

dVL acVL U -  VL VL' 
[2o1 

which can readily be integrated to obtain 

( c -  1)eL 
Vc U, [211 

c v L -  u 

where the constant C is determined by the boundary conditions at, say, x - O: 

U aa(0) Vo(0) aaVc 
C aL(O)VL(O) 1 + aL(O)VL(O) 1 + ¢XLV L [221 
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If Vc.L (0) >_ 0, C >_ 1. Note that, since in the steady case [1] implies the spatial independence 
of the volume velocities c~¢ Vc, and aLVL, from [22] it is seen that if CVL > O, VL maintains the 
same sign along the entire flow. 

In the phase plane (Vc, V~) of.the system [19], [22] represents a relationship between Vc 
and VL which must hold at any position along the pipe. Mathematically it corresponds to a 
family of hyperbolae with asymptotes at VL -- U/C and Vc - (C - I)U/C. All the members 
of this family pass through the point Vc - VL = U. As the flow evolves along the pipe the 
point representing the solution of the system [19] moves along a specific hyperbola of the 
family. 

The asymptotic behaviour of the solutions of [ 19] is determined by the critical points of 
the system, i.e. the values of Vc and VL which render the rhs of [19] zero simultaneously. The 
only such points at a finite distance from the origin in the (Vc, VL) plane are such that 

PLAL = p~A~, [23a] 

and points at which the denominator in [ 19] becomes infinite. However, this latter possibility 
implies a singular behaviour of the coefficients of the original equations [2] which would 
represent a breakdown of the model itself. A further possibility which must be dismissed is 
that singular points might exist for infinite velocities. Indeed, such points would have to 
belong to the hyperbolae [21] and therefore one of the velocities would be finite and 
consequently the slip infinite. It is obvious from [2] that [23a] does describe steady uniform 
flow and indeed PLAL or pcAc equals the common value of the pressure gradient in these 
conditions, 

ap 
0"~ "= PLAL -- PGAo. [23b] 

In the phase plane (V~, VL) [23a] represents a curve and the critical points lie at its 
intersections with the particular hyperbola of the family [21] corresponding to the inlet 
conditions of the flow. It is well known from the theory of differential equations (Coddington 
& Levinson 1955) that the stable critical points are the asymptotic values of VL and VG as 
x ~ =. We are thus led to investigate the stability of such points, which correspond to flows 
which are not only steady, but also uniform. 

S T A B I L I T Y  OF U N I F O R M  S T E A D Y  F L O W  

Consider a steady uniform flow with velocities VL, VG, U. Then equations [23] imply the 
vanishing of Ba.L defined by [17]. To investigate the stability of this flow against small 
perturbations we set 

gc.L - V~.L + v~.L, [24] 

u- u + u(t). [25] 

Note that, according to [5], the perturbation u(t) of the volume velocity depends only on the 
time. Upon insertion of [24] and [25] into [I l] and linearization one finds 

Ov'a Ov'L Ov'~ Ov', , aB~ 
(1 + aL~) ~ -  - '~:L ~ -  + W~TX + W O ~ -  x -- t~"~ + ~ + S ~  + - ~  u,[26a] 

Ov'L Ov'a Ov', Ov'o OBL 
(1 + "~L) "~- -- ' ~ o ' ~ -  + W= ~-X + WL~ ~'X -- ~ + ~ = ~  + S~/, + ~-6 U, [26b] 

where overbars have been dropped for convenience and 

[3# - O.~B,~, i , j  - L, G. [27] 
or j  



138 ^. v. JONES and  x. PROSPERETTI 

It can be verified by direct substitution that the following change of dependent variables: 

vb - vo + Bozc~(t) + Boac:(t), 

V'L - vL - BGGCt(t) + BLaC2(t), 

[28a] 

[28b1 

where 

c~(t) = Cto - 
u ( t )  - u(O)  

aRB.  + BLo)' 

C2(t ) = exp [(Boo +/~z~)t] 

OB L 
[B,dSa + ~L) + B.(S£ + ~a)]u + - ~  (BGa + BL,)u 

BLa(BLL + BOG)(1 + ao~,~ + a,~o) 

x exp [--(BGG + BLt)t'] d t ' l ,  

J 
and C~o, C2o are arbitrary constants, reduces [26] to 

aug avL arc w OvL 
(1 + aLno) ~ - amL ~ + Waa-~x + "oL ~ - BotvL + B~avo, [29a1 

OvL Ova w OvL w Ova 

The solution of this system can be found by separation of variables writing 

va2 = "Uo.L exp [ ikx  + k (c - iK) t ] ,  [30] 

in which ~a.L are constants, k is the wavenumber of the perturbation, and the real constant 
K, introduced for convenience, is defined by [37] below. 

The complex eigenvalues c are determined by substitution of [30] into [29] to find 

Ak2c 2 - [ i k (2KA - E )  + B]kc  + k2F + i k ( K B  - D) + BaCBLL -- {3aLflLO -- O, [31] 

where 

A - 1 + aLT/G + aGT/L, [ 3 2 ]  

B - B,z + BaG + TIG(aLBI.L + aGBGL) + ~L(aaBaa + aL~LG), [ 3 3 ]  

D - BLz(W + aL0o) + Boo(W + aa0L) [34] 

+ BLa (U-  gG) + a,OL + #oL ~ (U-  gD + aoOa , 

E - (l + aL~G)(W + aoOL) + (1 + acTk)(W + aLOa) [35] 

-=m, [~  (U-  VL)+ a~a]-~a'lG [~ (U-  Va)+ '~LOL 1, 

F - K2A - ( W  + ¢I£OG)(W + ¢~GOL) + ( U  - VL) + ¢XaO ( U  - Va) + ClLOL • 
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In order to make the coefficient of c in [31 ] real we choose 

K - E/2,4. [37] 

Since k in [30] is real the steady uniform flow under investigation is unstable unless 
Rec _< 0. In general, given the equation 

X 2 + p X  + q + ir = 0 [38] 

with p, q, r real quantities, it is a simple matter to show that the conditions ensuring REX_< 0 
a r e  

p2q >__ r 2, p >__ 0. [39] 

The first of these stability conditions applied to [31 ] gives 

B 2 
--~ (k2F + [3ca/3Lt - {3attiLa) >-- k 2 ( g B  - D) 2. [40] 

Equation [40] seems to imply a dependence of the stability upon the wavenumber of the 
perturbation, as expected from the presence of nondifferential terms in [2]. However no such 
dependence is present here due to the following relations 

at/3Lt + ad3at - ot~/3,~ + at{3La-- O, [ 41 ]  

which imply that 

~CC~LL - -  ~ L C ~ a L  = 0. [42] 

Equation [41] follow readily from the definition [17] of B~.t and [23] which are valid for 
steady uniform flow. Equation [40], therefore, reduces to 

B 2 
- -  F >__ ( K B  - D) 2. [43] 
A 

The second stability condition derived from [39] is simply 

_< 0, [44] 
1 + etdlo + aGTIL 

which is also independent of the wavenumber. 
The independence of these two stability conditions from the wavenumber is certainly 

unrealistic, and indicates that models which can be cast in the form [1], [2] have at best 
limited validity. Condition [43] will be discussed further in the following sections. 

As for the condition [44], we note that 

l [  oao oAa / 1 / oAL 0aL  
- -  ~aL OVL] po 

[45] 

Aside from the gravity term g, which does not contribute to the derivatives because it 
necessarily enters additively in Aa.L, the Aa.L represent the algebraic contributions to the 
drag forces on the phases, as is clear from their position in [2]. A sufficient condition for 

13ca + fiLL < 0 [46] 
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is that the algebraic drag Aa decreases with V~ and increases with Vt, while the converse 
holds for At. These conditions are not unreasonable away from flow regime transitions; for 
example, for the simple drag functions [4], the condition [46] reduces to 

H + a[ O(K~Vc)o.___~G + °t~a O(KtVL)o___.~L >- O. [47] 

The interphase drag coefficient H is necessarily positive, and the structure drag forces can be 
expected to be increasing functions of their respective velocities in most cases. The condition 
[46] is equivalent to [44] provided that 

1 + aLT'l G 4- OtGTI L ~.~ O. [48] 

Note that ~.L vanish with the right-hand sides of [2]. Since the left-hand sides of [2] are 
themselves presumably a fair approximation to momentum balances for the phases, we do 
not expect the weight of the terms on the right of [2] to be such as to make [48] invalid. 
Equation [48] will be found to be satisfied in the examples to be analysed below. 

We note that use of the definitions [32]-[37] allows an alternative and more explicit 
form to be found for the first stability condition [43], namely 

v ~ - ~  

1 + a d l a  + OtG~L 
• [ ( ~ c  + ~ L t ) ( = ~ L  -- =L~ttO~) + ( ~ L V t  + ~ V ~ ) ( = ~ t ~  - =~oc~L)] 

~(v~ - v~) ~ ~ ~ c  + - -  ~ h  
~,Pa PL 

1 + ad/a + aa~L 

[49] 

Obviously, this condition is satisfied if Va = VL. 

REALITY OF CHARACTERISTICS AND STABILITY 

It is possible to establish an explicit connection between the stability criterion [43] for 
steady uniform flows and reality of characteristics of the system [11]. The characteristics of 
this system, dx/dt = ~ ,  are given by 

1 
u~ = ~ K _+ [50] 

These are of course also two of the four characteristics of the original system [1], [2]. The 
remaining two are found to be infinite because of the assumption that both phases are 
incompressible. The condition for the reality of the characteristics [50] is F/A >_ 0 which is 
clearly a necessary condition for the stability criterion [43] to be satisfied. We therefore 
conclude that, for the class of first-order models considered here, reality of characteristics is 
a necessary condition for the stability of steady uniform flow. This result is not trivial since 
for differential systems containing algebraic source terms, such as Ac.L in [2], reality of 
characteristics and stability coincide only in the limit k---, ~ (Ramshaw & Trapp 1978). The 
present result is a consequence of the independence of the stability criteria [43], [44] on the 
wavenumber. For the class of models considered in this paper, complex characteristics are 
bound to result in an unstable flow, although instabilities can also be modelled in the 
framework of a totally hyperbolic system when F/A is positive but conditions [43] or [44] 
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are not satisfied. The reality condition above may be written in the more explicit form 

1 
[ot~(OL - ,1, v~) + ,~,(o~ - ,l~Vc)l 2 - ~2 ~ ,  (v~  - v~) '  

PGPL 

- -  + Oalo - 0~,7 >- O. 

[511 

This condition is clearly met when Vo - V, provided 0c.L, ~o,L are finite in this limit. 
In the following sections we shall consider three specific models in the light of the general 

results obtained above. 

A SIMPLE MODEL 

We first consider perhaps the simplest model of the class [2], in which the right sides 
vanish. This model seems to have been first published by Wallis (I 969) and has subsequently 
been extensively used in numerical applications by Harlow & Amsden (1975) and others 
(e.g. Stewart 1979, Liles & Mahaffy 1979, Spalding 1979, Smith 1980). The two stability 
conditions [43], [44] reduce in this case to 

(Va - Vt) 2 --< O, [521 

and 

t ~c  + f l u  -< O. [531 

The first relation can only be satisfied for equal velocities, while to the second one the 
considerations already made regarding the Ac.L apply. The characteristics of this model are 
found from [50] to be 

, ,  - v L ) ,  [54] 

and are complex unless Vc - VL, as expected from the previous section. This circumstance 
has been noted many times in the past (e.g. Gidaspow 1974, Bour~ 1975). When Vc - V, the 
eigenvalue equation [31] has the roots c - 0 and c - (~6c +/~LD/k. The second root 
corresponds to a damped perturbation when the stability condition [44] is satisfied, while the 
first root describes a neutrally stable perturbation propagating with the common velocity of 
the phases Vc - VL -- U. 

Since in the framework of this simple model in a steady uniform flow the phases must 
move with a common velocity U, such a flow is completely specified by U, the pressure 
gradient Op/Ox, and its composition aG (or aL). These three quantities are connected by [23] 
so that the specification of any one of them determines the other two. Thus, for example, a 
specified pressure gradient fixes the velocity and the composition of the two-phase flow. Due 
to the nonlinearity of [23] more than one solution may exist, but in any case, for a fixed 
pressure gradient, the composition of a steady uniform flow cannot be specified arbitrarily. 
This feature appears to be unphysical since one would expect to be able to specify the 
pressure gradient and volume fraction independently, the flow velocity then being deter- 
mined. 

AN EQUAL-PRESSURE MODEL WITH OBJECTIVE ADDED MASS TERMS 

A form of the added mass interaction between the phases has been developed by Drew et 
al. (1979) exploiting the objectivity principle of continuum mechanics. For the gas phase this 
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added mass force has the form 

a 
FG = CvM "~ (VL - Vc)  

+ [(2 - X)Va + (X - I)VL] • VVL -- D, VL + (1 - h)Vc] • VVo[, 

, t  

J 

[551 

while that for the liquid phase is obtained by interchange of the indices G, L. CvM and )~ are, 
in principle, functions of the flow variables and 0 _< h _.< 2. Since added mass forces should 
vanish in single-phase flow we define a new dimensionless parameter CM by 

Cvu = aLCta-PCM, [56] 

where 

-fi = OtLp L + OtGp G 

is the mixture density. Extensions of the Wallis model which include the terms [55] may be 
written as 

a ao ap 
(,~V~) + ~ ( ,~V~)  + - - -  

p c  ax 

[avL a v e  [57a] CM[-~  at + [(2 - X)V~ + (X - I)VL] avL = otaAG + ot6aL P"~a - -  " Ox 

- [xv~ + (I - x)v~l  ~ - x  j '  

~t ~x ~,. ap 
(aLva) + ( ~ v t )  + - - - -  

PL Ox 

IOv__o av~ cM. [(2 - x)v~ + (x - 1)Vd av~ 
= aLAL + aO-aL PL [ at Ot OX 

[57b] 

+ [xvL + (1 - x)v~] -~-x l ,  

This form with h = 1 corresponds to that used in RELAP-5 (Ransom et al. 1980) and 
RISQUE (Andersen 1977). Comparing [55] with [2] we readily identify qo and r~j and 
obtain the following expressions for the quantities appearing in [31 ]: 

nL - n~ - ,7 C u # f f  a a p c  + aa~L C~, ,  [58] 
P6PL c~GpL + OtLpG 

0/~ - n ( V ~  + A), [59] 

2 w +  ,7(v~ + v~) + ,~A 
K - , [ 6 0 ]  

1 + 7 /  

F - "T (1 + ~) - ~ ~ v ~  + - -  v ~  - ~ v ~ v L  - ,1A(,~Y~ + =~v~), 
LOG PL 

[61] 

where 

A = (1 - X)(V~ - VD. 
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The denominator of the second stability condition [44] has the value 1 + n and, since CM >-- 0, 
this is positive and therefore it only requires #tL + /3~c ---< 0. The first stability condition [47], 
upon division by (Vc - VL) 2, simplifies tO 

CU[#LLBCa + (1 -- h)(#tt  + #CC)(aOBCO -- atBLL)] >--- -~ L~#~,L + p a  j .  

Clearly, this condition can be satisfied when the left side is bounded away from zero and 
positive by choosing Cu large enough. As an example we may consider the drag functions 
[4], without structural contribution, i.e. with Kc - K L -  O. We consider the following 
specific form for the interphase drag coefficient H, which is that used in the code RELAP-5 
(Ransom et al. 1980), 

[63] 

where N is a constant and a.  - aG '  Px - -  PL when ac < eeL, while .~ - c~L, p~ - P c  for ao > aL. 
With [4] and [63] we find for the functions/5 

I v c -  Y'LI 
[3ca - - 3 N ~  ~ L ,  [64a] 

PL<xc 

IVc- VLI 
/ ~  - - N ~  (2ca - O~L), [64b] 

PLCtG 

when OiL < o~a while the appropriate forms in the case "L > O~C are obtained by interchanging 
the indices L and G. Upon insertion of these expressions into [62] we obtain stability bounds 
C*  which are illustrated in figures 1 and 2. For CM > C*  a steady uniform flow described by 
[38] with the drag coefficient [63] is stable. Figure 1 refers to the case Po/PL -- 10 -3 which is 
typical of gas-liquid flows, while figure 2 refers to the equal density case p~ - pL which is 
typical of liquid-liquid flows. For a~ < 0.5 and X not too close to zero, one finds reasonably 
low values of C*.  For "c  > 0.5, low values of h appear more suitable. The above results are 

~ ~  l~s 

X-O 

0.5 ~ 0 

i I i O.S 

Figure 1. The value of CA is shown for Oo/PL - 10 -3 as a function of aa for several values of X 
according to [62] with the drag function [63]. A value of the added mass coefficient C. > C~ ensures 

the stability of steady uniform flow. 
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Figure 2. The value of C~. is shown for Pc - PL as a function ofaa for several values of~, according to 
[62] with the drag function [63]. A value of the added mass coemcient CM > C~ ensures the stability 

of steady uniform flow. 

presented mainly as examples of one way in which our stability theory can be exploited in the 
assessment of proposed drag functions. 

It is also of interest to examine the condition for reality of characteristics for [57] with 
added mass terms. The condition F/A >__ 0 is found to reduce to 

(V a -  V L ) 2 { ~ n 2 [ l + 2 ( 1 - h ) ( a a - a L ) + ( 1 - h ) 2 ]  

+ ~/~(l--h)ao-.aL(-~L 1) / _ ~ _ ~: '~o~, >__ 0.  

PGPLJ 

[651 

If Vo - VL ~ 0 this condition in terms of CM becomes 

C ~  [1 + 2 ( I  - X)(aa  - =L) + (1 - X) 2] 

- -  PGPL _4cPL P PG (1 --  X )a6-a  L - -  40eGOlL '~ - -  >-- O. 

[661 

It may be shown that [66] is satisfied by Cu >-- 1 for any h in the range (0, 2). 
It is clear from the above that for Cu sufficiently large stable steady uniform flows with 

unequal velocities are possible. 

A M O D E L  FOR D I S P E R S E  F L O W  

Voinov & Petrov (1979) have derived an alternative expression for the added mass force 
in disperse flow. In the incompressible case this reduces to 

1 [OVa CgVC aVL OVLI, 
Fa = - -~ PLea I- ~ + Va a---x at VL Ox / [67] 

for the disperse phase (which, for definiteness, we take to be the gas) while the appropriate 
form for the other phase is FL = --Fa. 

It may be noted that the Drew et al. (1979) expression does not reduce to this form for 
any value of the parameter ~ so that (67) is not objective. In view of the ambiguous status of 
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objectivity in current multiphase flow modelling (Drew 1983, Ryskin & Rallison 1980) this 
circumstance may not appear to justify rejection of [67] out of hand. 

If [67] is used in place of [55] in the momentum equations [57] the characteristics of the 
resulting system are found to be complex (Prosperetti & Van Wijngaarden 1976). However, 
in addition to the added mass force [67] in a disperse two-phase flow further interactions are 
present certain of which, as suggested by Prosperetti & Jones (1984) and by Biesheuvel & 
van Wijngaarden (1984), have the form 

Q pL 0 [an (Ve  - VL) 2] [68] 

where Q is a dimensionless coefficient. According to the authors cited, this term should only 
appear in the continuous phase (liquid) momentum equation. We are therefore led to 
consider as our third example the following momentum equations: 

a a ae at, 
at (acre) + (aeV~) + ~ ~ + a~e 

1 P_A M [aVe ave OIL 
- i a e p e  ~ -  + Ve Ox at 

a a at ap 
at (a~VL) + ~ (aLVD + --p~ ~ + a~aL 

c) 1 M (aVe aVe OIL 
- Q ~ [ae (Ve - VL)'] + ~ ae ~"~ + Ve ax at 

ax 1' 

Ox j '  

[69a] 

[69b] 

The dimensionless positive parameter M multiplying [67] has been introduced for increased 
generality. 

The auxiliary quantities defined in [13]-[18] are readily computed. In particular one 
finds 

M~ 
- , [70] 

T/G T/L- 2Po~L 

oe - ~" [~ MVe + aeQ (Vo - vD] 
p e a l  L L 

OL-- paaLP [~ MVL + (I + ae)Q(Ve - VL)] 

[71a] 

[71b] 

Since A - 1 + ae~/L + ad/e is positive, the characteristics are real provided that, 
equation [51 ] 

a~ + + --PL (1 + ae) - ae Q - p~pL 
M( Pe) M s 

[72] 

where a common factor (Ve - VL)" ~2aa/pe has been omitted. The inequality is satisfied for 
Q < Q -  and Q ~ Q +,  with Q ± the two roots of the quadratic. 

At low gas volume fraction and for Pe < PL one finds 

I 
Q+ = 1 + ~ M + O ( a e )  
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1 M 
Q -  - - -  + 0(1) [74] 

2 ao-aL 

The second root is seen to diverge in this limit. In the paper by Prosperetti & Jones (1984) 
the value I/4 was suggested for Q, but it was recognised that other contributions would be 
present in a complete model arising from correlation terms (Reynolds stresses) and other 
effects. The model of Biesheuvel & van Wijngaarden includes some of these effects and 
results in a net Q which is negative. In both cases the characteristics are then complex for 
a c  "--" O. This conclusion indicates that terms having a different structure from [68] should 
be present in a complete model. 

C O N C L U S I O N S  

The purpose of the present study has not been the proposal of a specific two-phase flow 
model, but rather the examination of a general class of one-dimensional models containing 
only first-order derivatives and algebraic terms, see [l] and [2]. This class of models is 
sufficiently general to include several formulations of the added mass force and other 
interactions between the phases including drag forces and drag forces with a solid structure. 
Furthermore different pressure gradients are allowed in the two momentum equations, 
provided that their difference can be expressed as a linear combination of derivatives of the 
other flow variables, namely velocities and volume fractions. 

We have carried out an analysis of the linear stability of steady uniform flow as described 
by this general class of models and have derived explicit stability criteria. Despite the 
presence of nondifferential terms in the model, it has been shown that the stability properties 
do not depend upon the wavelength of the perturbation. This feature is certainly unphysical 
and indicates that the model considered,, in spite of its generality, is incomplete. This is 
reminiscent of the situation encountered in the stability analysis of tangential velocity 
discontinuities when gravity and surface tension effects are omitted (Landau & Lifshitz 
1959). A valid model would presumably contain higher value space derivatives such as those 
representing surface-tension effects (Ramshaw & Trapp 1978). Our analysis of general 
models containing second-order space derivatives (Prosperetti & Jones, 1985) does in fact 
indicate a wavelength dependence of the stability criteria, although the results of the present 
paper are recovered for long waves. 

Another possible feature of a more realistic model which is not included exactly in the 
formulation examined here is the explicit appearance of the pressure elsewhere than in the 
pressure gradient, e.g. in a term like pVac.t Should terms of this form be present in a steady 
uniform flow the coefficients of the perturbed equations would depend on the space 
coordinate through p. In this case our results are approximately valid for perturbations of 
sufficiently small wavelength, i.e. small compared with the characteristic length of variation 
ofp (Ramshaw & Trapp 1978). 

In general, hyperbolicity and stability coincide only as the wavelength of the perturba- 
tion tends to zero (Ramshaw & Trapp 1978): However due to the wavelength independence 
of the stability properties of the present model, we find that hyperbolicity is a necessary 
condition for stability. 

In the light of the general results obtained we have analysed three specific models and we 
have obtained bounds on the parameters appearing in order for the models to be stable. 
Another possible use of our results which we have illustrated when considering the second 
example is in the assessment of interphase drag functions. In addition we have considered 

• tTbere arc good reasons to believe that the term pVao should not be present for disperse two-phase flows 
(Prosperetti & Jones 1984). 
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steady nonuniform flow and have obtained an explicit relationship between the velocities of 
the phases as the flow evolves in space. 

At the root of our consideration is the assumption that steady uniform flows are a 
physical possibility for two-phase flow systems. Even if the flow cannot literally be steady 
and uniform, if for no other reason than the discrete nature of the phases, by a suitable 
definition of averaging the flow variables appearing in the conservation equations can be 
made independent of space and time (except of course, for the pressure) in a number of 
practical situations. 

In order to obtain the results described it has been necessary to assume that the two 
phases are individually incompressible. This is certainly justified in liquid-liquid and 
liquid-solid flows in a wide range of conditions, and in some flows involving a gas (e.g. droplet 
flow) at low speed. With this assumption the energy equations decouple from the other 
equations and need not be considered. 

Continuity arguments suggest that results similar to ours will hold in the compressible 
case, at least at low velocities. The stability analysis would however have to start from the 
complete equation system (including the equations of state and possibly the energy 
equations) rather than from the simplified system [11] obtained by the elimination of the 
pressure gradient and would be significantly more complex. 
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